
T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 387;21  nejm.org  November 24, 2022 1969

Review Article

From the Climate and Health Challenge 
Area, the Wellcome Trust, London (M.C.T.); 
and the Department of Pediatrics, Vagelos 
College of Physicians and Surgeons, Co-
lumbia University, New York (L.R.S.). Dr. 
Thomson can be contacted at the Well-
come Trust, 215 Euston Rd., London 
NW1 2BE, United Kingdom.

N Engl J Med 2022;387:1969-78.
DOI: 10.1056/NEJMra2200092
Copyright © 2022 Massachusetts Medical Society.

The effects of climate change are widespread and rapidly in-
tensifying and are largely driven by greenhouse-gas emissions from burn-
ing fossil fuels.1 Global mean temperatures have already increased by 1.1°C 

since 1900,1 with most of the change having occurred in the past 50 years. The 
extent of change is most extreme in highland and polar regions (Fig. 1), and tem-
peratures in tropical regions are creeping closer to the thermal limits of many 
organisms. Given the current policies and actions, a warming of 2.5°C to 2.9°C or 
more by the end of this century is expected.2

Warming and other manifestations of climate change — including changes in 
precipitation, with increased flooding in some areas and drought in others — have 
important implications for vectorborne diseases through their effects on patho-
gens, vectors, and hosts, as well as on our ability to prevent and treat these dis-
eases (Fig. 2). Yet attributing changes in the distribution and frequency of vectors 
and diseases to climate change is challenging because other factors, including 
land-use changes,3 the abundance of reservoir hosts,4 and control measures,5 also 
contribute to these changes. Furthermore, it may be difficult to distinguish be-
tween natural climate variability and human-influenced change,6 although scien-
tific techniques to do so are emerging. Despite these complexities, it is clear that 
the components of vectorborne disease systems, including pathogens, vectors, and 
reservoir hosts, are highly responsive to the varied environments they inhabit and 
that observed changes in the rates of vectorborne diseases at given locations are 
often associated with concomitant changes in the local climate.

For example, warming temperatures affect the behavior, physiologic character-
istics, and life history of both vectors and pathogens as well as the abundance and 
behavior of reservoir hosts and definitive hosts. The interactions among tempera-
ture, vector, and pathogen can change the risk of human-to-human disease spread 
and of spillover to humans from reservoir hosts. Thermal performance curves il-
lustrate the ways in which temperature affects the physiological traits of patho-
gens, vectors, and reservoir hosts, which determine the rate of disease spread in a 
susceptible population. These curves are commonly used to predict the potential 
effects of rising temperatures resulting from climate change on vectorborne dis-
ease systems.7 Curves for individual components of a disease system must overlap 
in order for transmission to occur. Thermal adaptation, acclimation to a warming 
climate, or both can potentially shift thermal performance curves and thermal 
tolerance limits, with important implications for expansion of the geographic 
range of certain diseases. Depending on their ability to adapt, vectors may no 
longer carry certain pathogens or may carry new ones as climate-mediated ecosys-
tem changes bring different pathogens, vectors, and reservoir and human hosts 
together.8

Fossil-Fuel Pollution and Climate Change
Caren G. Solomon, M.D., M.P.H., Editor, and Renee N. Salas, M.D., M.P.H., Guest Editor

Climate Change and Vectorborne Diseases
Madeleine C. Thomson, Ph.D., and Lawrence R. Stanberry, M.D., Ph.D.​​

The New England Journal of Medicine
Downloaded from nejm.org on March 30, 2024. For personal use only. 

 No other uses without permission. Copyright © 2022 Massachusetts Medical Society. All rights reserved.



n engl j med 387;21 nejm.org November 24, 20221970

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

 Clim ate-Sensi ti v e V ec t or bor ne 
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The Intergovernmental Panel on Climate Change 
reported with high confidence that the preva-
lence of vectorborne diseases has increased in 
recent decades and that the prevalences of ma-
laria, dengue, Lyme disease, and West Nile virus 
infection in particular are expected to further 
increase during the next 80 years if measures are 
not taken to adapt and strengthen control strat-
egies.1 Table 1 describes these and additional 
examples of vectorborne diseases that are re-
sponding to a changing climate. Additional de-
tails are provided in Figure S1 in the Supplemen-
tary Appendix, available with the full text of this 
article at NEJM.org.

 Malaria

Malaria, which is caused by plasmodium species 
and is transmitted between humans by infected 
female anopheles mosquitoes, is the most dead-
ly and most studied climate-sensitive vector-
borne disease. Despite control efforts, more 
than 600,000 deaths were attributed to malaria 
in 2020, predominantly among pregnant women 
and young children in Africa.26 In many regions, 
malaria is a seasonal or epidemic disease that 

responds to short-term changes in rainfall, hu-
midity, and temperature. Temperature increases 
of 0.2°C per decade in the highlands of Colom-
bia and Ethiopia have been associated with the 
spread of malaria to higher elevations in these 
countries.9,27 The frequency of droughts is also 
increasing as a result of climate change and may 
reduce the prevalence of malaria in certain re-
gions. However, the broader effects of climate 
change on local livelihoods, food security, and 
migration may increase population vulnerability 
to the disease and undermine the effectiveness 
of control strategies, irrespective of the direct 
effects of climate change on transmission.28

 Dengue

In recent decades, the geographic range of den-
gue, the most common mosquito-borne viral 
disease worldwide, has expanded substantially in 
response to declining vector-control programs 
and increasing global trade and travel.29 An esti-
mated 390 million cases occur each year in more 
than 100 countries.30 The four serotypes of den-
gue virus are transmitted between humans — 
the primary reservoir host — by infected female 
mosquitoes, most commonly Aedes aegypti and 
A. albopictus. Water-storage containers, which are 
commonly used in regions where a piped water 
supply is inadequate, or rainwater-filled contain-
ers (e.g., tires, pots, and tree holes) can become 
mosquito breeding sites and can thus drive epi-
demics.31 Transovarial transmission of dengue 
virus (from female mosquitoes to their off-
spring) and the long-distance dispersal of 
drought-resistant aedes eggs in suitable contain-
ers facilitate efficient expansion of the virus 
worldwide.32 The northward expansion of A. aegypti
and A. albopictus thus far is best explained by hu-
man movement patterns within regions in which 
the climatic conditions are suitable for geo-
graphic expansion; however, by 2030, the domi-
nant cause of expansion of these vectors is pre-
dicted to be climate change.33 The differential 
ability of A. aegypti and A. albopictus to survive 
normally lethal temperatures may influence their 
roles in future outbreaks.

 Lyme Disease

Lyme disease (which is caused by the Borrelia 
burgdorferi sensu lato complex) is the most com-
mon tickborne illness worldwide, with an esti-
mated seroprevalence of 14.5%; the reported 

Figure 1. Mean Surface Air Temperatures.

Shown are mean surface air temperatures from 2011 to 2021 as compared 
with baseline mean temperatures from 1956 to 1976. Adapted from the Na-
tional Aeronautics and Space Administration Goddard Institute for Space 
Studies (https://data .  giss .  nasa .  gov/  gistemp/  maps/  index_v4 .  html).
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prevalence is highest in the temperate regions of 
central and western Europe and East Asia.34

Without early treatment, infection can cause 
debilitating multisystemic chronic disease.34

Worldwide, Lyme disease involves four dominant 
tick species, although generally only one tick 
species is important in any given region.35 Wide-
ranging reservoir hosts — including mammals 

Figure 2. Pathways between Fossil Fuels and Rising Greenhouse Gases and Vectorborne Diseases.

The climate experienced at any location and time represents a combination of natural climate variability and, increasingly, climate change. 
As greenhouse gases accumulate and lead to increased global temperatures, extreme weather events are becoming more frequent, more 
severe, or both.
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(e.g., mice and squirrels), lizards, and birds — 
are part of the ecologic complexities of this 
disease; however, humans play no role in ongoing 
transmission.35 The life cycle and prevalence of 
tick vectors, primarily Ixodes scapularis and I. pacificus 
ticks in North America and I. ricinus and I. persul-
catus ticks in Europe, are strongly influenced by 
the abundance of reservoir hosts and by the 
ambient air temperature.36

Insurance records indicate that 470,000 cases 
of Lyme disease were diagnosed and treated in 
the United States during the period from 2010 to 
2018, as compared with 329,000 cases during 
the period from 2005 to 2010.37. Lyme disease is 
most common in the Northeast and rare in the 
Southeast; although tick vectors are found in 
both regions, variations in the host preferences 
of the ticks (e.g., lizards or mice), in the host-
seeking behavior of the ticks, and in the tick 
density help to explain this geographic pattern.36 
The increases in Lyme disease cases in the 
Northeast are largely attributed to the recovery 
of white-tailed deer populations,36 which are 
critical hosts for adult stages of the tick vector; 
however, increased human–tick interaction ow-
ing to the extended summer season resulting 
from climate change also contributes to the 
increases in cases. Warming temperatures have 
been associated with the expansion of ixodes 
ticks into Canada and Norway, with a corre-
sponding increase in cases of Lyme disease.19,38

West Nile Virus Infection

West Nile virus causes potentially fatal neuroin-
vasive disease in humans and animals world-
wide.39 The virus is part of a complex ecosystem 
that is centered around a bird–mosquito trans-
mission cycle involving more than 300 bird spe-
cies and at least 65 mosquito vectors. Mammals, 
including humans and horses, can be inciden-
tally infected. Human infections are mostly asymp-
tomatic but can cause life-threatening illness in 
rare cases, predominantly in older adults and 
in immunocompromised persons.40

West Nile virus, which was first identified in 
the United States (in New York City) in 1999, is the 
leading cause of mosquito-borne disease in the 
continental United States. During the period from 
1999 to 2016, nearly 7 million persons were in-
fected.41 The observed air temperature that re-
sults in a peak incidence of the virus among 
humans across the country was found to be 

24°C, which closely matches the temperatures 
(which ranged from 24°C to 25°C) that were pre-
dicted by mechanistic models that were based 
on vector and pathogen thermal performance 
curves.42 Warming temperatures are expected to 
shift transmission of this disease northward, as 
is already occurring in Europe; local transmis-
sion was recently discovered in Germany after 
unusually warm weather.40

Inequa li t y a nd V ulner a bili t y

Climate change exacerbates inequalities, such as 
those driven by systemic economic injustice.43 
Persons living in less developed countries bear 
the greatest burden of most vectorborne diseas-
es, a circumstance that reinforces health inequi-
ties and hinders socioeconomic development. 
Poverty, inadequate housing, poor environmen-
tal conditions, and limited access to quality 
health services exacerbate the effect. Children 
are particularly susceptible,44 owing in part to 
the effects of malnutrition45; women and older 
adults are also at increased risk. Vectorborne 
diseases during pregnancy are associated with 
particularly poor health outcomes among moth-
ers and newborns from low-income or otherwise 
disadvantaged groups,46,47 as evidenced by the 
devastating effects of congenital infection with 
Zika virus during the explosive epidemic of Zika 
virus infection (which was spread by aedes mos-
quitoes) in Brazil in 2015.48

Public He a lth In terv en tions

Investments in surveillance and control have led 
to improvements in the public awareness, detec-
tion, prevention, and treatment of vectorborne 
diseases49 and form the basis of adaptation strat-
egies for a changing climate (Fig.  3).1 Specific 
measures to be taken vary according to disease, 
pathogen life cycle, and the level of risk and may 
include a combination of enhanced and new 
land-use management strategies, climate-informed 
early-warning systems, improved access to pre-
vention measures (e.g., biologic mosquito con-
trol, personal protective measures, insecticides, 
and vaccines), and new and improved therapies50 
(Table 2). Figure S1 shows the projected benefits 
of adaptation strategies with respect to vector-
borne disease rates. To be successful, interven-
tions must include sustainable funding, as well 
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as community and household acceptance and 
uptake. A 2017 survey of 1083 U.S. vector-con-
trol programs showed that 84% of the programs 
were rated as “needs improvement” in one or 
more core competencies (e.g., insecticide-resis-
tance testing).59 The same year, the Centers for 
Disease Control and Prevention established five 
regional centers of excellence to help respond to 
emerging vectorborne diseases and to help create 
a new generation of vector experts.60

Malaria highlights several challenges that 
can occur in the implementation of adaptation 
strategies. After two decades of concerted inter-
national and national investment and consistent 
declines in malaria cases and malaria-related 
deaths, worldwide funding has stagnated; ma-
laria is now resurgent in several countries, ow-
ing in part to increasing drug and insecticide 
resistance and, to a lesser extent, to service dis-
ruptions resulting from the coronavirus disease 
2019 (Covid-19) pandemic.26 Innovations are 
needed to keep up with biologic and socioeco-
nomic challenges and to ensure equitable access 
to high-quality treatment in low- and middle-
income countries.

The prevention of dengue and West Nile virus 
infection relies mainly on community-level mos-
quito-control programs; the implementation of 
such programs varies according to several fac-
tors, including funding and management.61 
Avoidance of the vector habitat during the trans-
mission season as a result of public communica-
tion has long been an important prevention 
strategy for Lyme disease.62 Various personal pro-
tective measures (e.g., insect repellent and pro-
tective clothing) and tick-control strategies (e.g., 
the culling of deer) have been proposed as ap-
proaches to reduce the risk of Lyme disease, but 
evidence of effectiveness is generally lacking.60

Vaccines have been successful in the preven-
tion of three vectorborne diseases: yellow fever, 
Japanese encephalitis, and tickborne encephali-
tis.63 Despite the fact that vaccines approved for 
malaria64 and dengue65 in the past several years 
have had only limited success, efforts are under 
way to develop new and more effective vaccines 
that target vectorborne diseases.61 A recent phase 2 
trial showed the effectiveness of a single infu-
sion of a monoclonal antibody against Plasmodium 
falciparum infection over a 6-month follow-up 
period in Mali during malaria season.66 A for-

merly approved, effective vaccine for Lyme dis-
ease was withdrawn from the market,67 but a 
new Lyme disease vaccine is currently being 
evaluated in a phase 3 trial (ClinicalTrials.gov 
number, NCT05477524). Similarly, a new dengue 
vaccine has shown promise in a phase 3 trial, 
and regulatory approval by European authorities 
is being sought (NCT02747927). According to 
the Intergovernmental Panel on Climate Change, 
successful vaccine development and uptake — 
although made more difficult by the growing 
worldwide challenge of vaccine hesitancy — 
have the potential to substantially offset the ef-
fect of climate change on vectorborne diseases.1

Better surveillance data and climate-informed 
early-warning systems are needed to enhance pub-
lic awareness, facilitate the targeting of resourc-
es (human and financial) for improved responses,5 
and identify knowledge gaps and research needs. 
Adaptation plans must be time-sensitive and 
context-specific while also taking into account 
factors such as shifting disease patterns, ex-
treme weather events, and current and future 
climate variations and trends.28 This approach 
will require collaboration among various sec-
tors, such as local health communities, urban 
planners, and climate experts.68

Implic ations for Clinic a l 
Pr ac tice

Education of health professionals is needed with 
respect to specific vectorborne diseases, particu-
larly in regions in which diseases are newly emerg-
ing or anticipated to emerge. In many locations, 
clinicians are likely to see more cases of vector-
borne diseases during longer transmission sea-
sons, especially in regions with historically low 
levels of transmission. Awareness of local changes 
in disease rates and travel histories on the part 
of clinicians is important.69 The nonspecific 
clinical manifestations of many vectorborne dis-
eases often make diagnosis difficult.70 Strategies 
for the prevention and treatment of vectorborne 
diseases are reviewed in Table 2. To help address 
the additional burden of health care delivery cre-
ated by a changing climate, health professionals 
can advocate for more climate-resilient health 
systems71 and for programs that focus on the 
current worldwide shortages of health profes-
sionals, including infectious-disease experts.
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 Mi tig ation of Clim ate Ch a nge

Reducing the risks of vectorborne diseases and 
other health consequences of climate change 
requires not only adaptation but also a rapid and 
equitable transition away from fossil fuels. The 
signing of the Inflation Reduction Act of 2022 
represents a necessary (although insufficient) 
move toward decarbonizing the U.S. economy in 
line with the goals set under the Paris Agree-
ment in 2015. The health care sector, which 
contributes an estimated 4.9% of the total car-
bon footprint worldwide, must be part of the 

process.72 As trusted voices,73 health profession-
als can weigh in regarding the importance and 
urgency of mitigation.74

 Conclusions

Climate change has substantial effects on patho-
gens, vectors, and reservoir hosts, with implica-
tions for the health sector worldwide. Many 
vectors are already expanding their latitude and 
altitude ranges, and the length of season during 
which they are active is increasing; these trends 
are expected to continue as the climate continues 

Figure 3. Key Adaptation Strategies for Responding to Vectorborne Diseases.

The panel on the left shows key community-based strategies for responding to the threat of vectorborne diseases. 
These include public policies that regulate land use and home construction, both of which can affect vector breed-
ing sites and reduce the risk of indoor mosquito bites; surveillance for vector abundance and the incidence and 
prevalence of disease; and syndromic surveillance. Surveillance may be enhanced through multisectoral collabora-
tions (e.g., meteorologic services that might predict conditions that are suitable for enhanced mosquito survival 
and parasite development). If early-warning systems can be developed, they could be used to enhance vector and 
disease surveillance in targeted areas. Then, if a surveillance threshold is exceeded, certain measures could be taken 
or reinforced (e.g., initiation of public-awareness campaigns that educate and provide guidance). The panel on the 
right shows the strategies that individual persons and households can use to prevent or respond to a vectorborne 
disease. For adaptation measures to be successful, community and household acceptance and uptake are needed.
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to warm. Changes at the local level will be con-
text- and disease-specific. Clinicians should be 
alert to changes in risk for the population they 
serve. To protect health and equity in a warmer 
world, investments are needed in vector control 
with respect to tailoring measures to rapidly 
emerging situations and in new forms of tech-
nology and approaches, including vaccines. Un-
fortunately, adaptation strategies will not be viable 

as a long-term solution without the implemen-
tation of sufficient, urgent mitigation efforts to 
maintain global temperatures below critical 
thresholds.1

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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Guest for their input on the text and figures and for help with 
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Table 2. Selected Adaptation Measures to Reduce the Effects of Vectorborne Diseases.*

Category Adaptation Measures

Vector and disease surveillance  
programs51

Newer surveillance systems that incorporate satellite data, smartphone-based dis-
ease reporting, and integration of artificial intelligence algorithms

Early-warning systems52 Accurate and timely climate-informed early-warning systems that monitor climatic, 
environmental, and socioeconomic drivers of vectorborne diseases and thus can 
be used to predict outbreaks

Vector-control programs53 Development of effective insecticides that are safe for humans and the environ-
ment†

Noninsecticidal strategies including microbial (e.g., the introduction of wolbachia-
infected mosquitoes into field populations) and genetic (e.g., the introduction  
of genetically modified mosquitoes that transmit a deleterious mutation)

Public awareness and engage-
ment54

Ongoing education of policymakers, public health officials, health professionals, 
and the public, particularly in regions where vectorborne diseases are emerging 
or anticipated to emerge

Health care systems1 Training of climate-educated health professionals to address the domestic and 
worldwide shortage of health professionals

Climate-resilient health care systems
Universal health care

Public policies55 Improved housing regulations (e.g., requiring household designs that restrict mos-
quito entry)

Improved land-use management strategies (e.g., limiting deforestation in tropical 
areas to prevent increases in mosquito breeding sites)

Personal protective measures56 Use of safe and effective insect repellents
Use of insecticide-treated bed nets
Avoidance of tick habitats (e.g., moist, shady environments), especially in spring 

and summer

Household interventions55 Indoor application of safe insecticides in homes with cracks, crevices, or ill-fitting 
doors or windows and in homes without door or window screens

Installation of window screens
Improved housing design to ensure well-fitting doors, windows, and roofs

Vaccines1,57 Safe, effective, and affordable vaccines for vectorborne diseases that confer durable 
immunity

National programs to address vaccine hesitancy

Drugs57 Development and broad distribution of drugs for the treatment of vectorborne dis-
eases, especially those predicted to have growing burdens of disease

Surveillance for drug resistance and understanding of potential effects of climate 
change on antimicrobial resistance58

Enhanced monitoring for counterfeit drugs

Diagnostics1 Inexpensive, accurate, and widely available diagnostics for climate-sensitive vector-
borne diseases

*	�The development and implementation of adaptation measures are associated with considerable challenges, including 
the need to ensure adequate funding for research and development and for the establishment and sustaining of pro-
grams and to ensure equitable access to adaptation measures.

†	�Insecticides such as dichlorodiphenyltrichloroethane (DDT) have historically been the cornerstone of vector-control 
programs but have become less effective and have unacceptable environmental and toxicologic effects.
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